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1 Introduction 

Crucial part of cancer diagnosis is an examination of histopathological slides performed by 
pathologists. Tissue samples obtained via biopsies are prepared—cut, stained, and fixed on 
glass slides, resulting in diagnostic slides containing patterns that would indicate if 
particular patient has sings of a disease. It could be stated that histopathological images 
present rich information about the cancer microenvironment (True and Jordan, 2008). 
Since the beginning of pathology discipline, interpretations of tissue slides have been 
manually carried out by human pathologists through grading standards and guidelines 
established by communities of pathologists, mainly, with a bright field light microscope 
(Joseph P. Houghton et al., 2014). The knowledge in pathology was handed over to the 
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newer generations of pathologists and clinicians through established grading standards, 
case reports, etc. which often describe structures of tissues by natural language or technical 
pathological terms with limited visual examples, WHO/ISUP grading standard would be 
one example (Delahunt et al., 2013). Two type of data from this branch of knowledge could 
be exploited including visual phenotypic data from large-scale histopathological images 
and expert knowledge which supports the decision-making process in cancer diagnosis. In 
this study, we investigate procedures for enriching tissue slides with semantic knowledge, 
our proposing open platform should help researchers to overcome technical and biomedical 
obstacles, accelerating the development of artificial intelligence in digital pathology.  

Since pathology is one of the last medical specialties to be digitized (Goode et al., 
2013), there has been limited software and tools that helps pathologists manage and analyze 
extra-large digital scans of glass slides–namely, whole-slide images (WSIs). At the current 
stage of digital pathology, there are no central group developing and maintaining standards, 
guidelines, or best practices. Thus, researchers and pathologists are struggling to choose 
appropriate data infrastructure for their projects that must support WSIs. Furthermore, even 
fewer open-source software may be used for annotating and analyzing the WSIs. No 
existing software supports online multi-user annotation with detailed spatial resolution and 
semantic meaning. Here, we present OpenHI—Open Histopathological Image, a publicly 
available open-source framework for WSI. It is capable of achieving pixel-level precise 
boundary and semantic annotation, and supports online collaborative annotation. 
Eventually, the proposed framework will facilitate the large-scale histopathological image 
annotation and benefit machine-learning based phenotype extraction.  

In recent years, there have been multiple implementations of machine learning methods 
to enhance histopathology image analysis workflow by either assisting pathologists in 
image analysis or by establishing automated pipeline to analyze, detecting and classifying 
the cancerous area, the WSI with high throughput and high precision to help reduce the 
workload of the pathologists (Kurc et al., 2015; Xu et al., 2017; Zhou et al., 2017; Mercan 
et al., 2018). However, these works were derived and tested on datasets with finite size and 
variability due to limited availability of public annotated datasets. With our proposed 
framework, rapid creation of such datasets could be accomplished, thus sophisticate 
computational approach that holistically analyze the WSIs may lead to a better grading 
decision (El-Gabry, Parwani and Pantanowitz, 2014). 

Annotation of medical data is expensive since it demanded labor for manual data 
annotation from experienced medical personnel (Xu et al., 2017). The scarcity of experts 
is not the only factor contributing to this problem. Pathologists around the work do not use 
the same grading standard to grade the sample. Pathologists in some countries must grade 
their tissue sample according to national standard provided by the local authorities. 
Measures must be taken to reduce the cost of biomedical data annotation. OpenHI was 
designed as a collaborative annotation tool, ensuring that the most efficient annotation is 
carried out by acquiring only the essential data from the annotators while maintaining high-
quality annotation. Existing pathological routine was taken into consideration during the 
framework design. Collaboration between pathologists, as a source of expert knowledge, 
and data scientists, who will manage the acquired data, is necessary to complete large-scale 
histopathological image data annotation and cross-validate the quality, thus the annotation 
framework would need to minimize technical configuration at the annotator end 
(pathologist) and maximize configurability at the data scientist end. The ideal software for 
this application would minimize the annotators’ effort to annotate the image while 
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capturing high information granularity including high spatial resolution and standardized 
semantic meaning. In the meantime, it should support online collaboration as well. 

2 Related work 

In cancer research, large-scale raw histopathology image repositories have been made 
publicly available by TCGA (Tomczak, Czerwińska and Wiznerowicz, 2015) project, 
GTEx (Keen and Moore, 2015) project, and some other projects. The repositories contain 
tremendous amount of WSIs in different cancer types and the amount of data is 
continuously growing. The main barrier of fully utilizing the data for automated methods 
is the lack of annotations. In recent years, there are enriched WSI datasets used in different 
image analysis competitions (B et al., 2017; Veta et al., 2018), however, they are limited 
by public availability, size, variability in cancer type, or spatially precise annotation. An 
annotation software capable of capturing precise visual annotation and semantic 
information enrichment is highly demanded.  

WSI files are hard to be read efficiently because WSIs cannot be saved in standard 
image format due to its unusually high resolution. In response, different whole slide 
scanner venders have come up with their own proprietary standard and file format to save 
WSIs as tiled multi-scale images. The DICOM or Digital Imaging and Communications in 
Medicine standard is the only public and general standard (Clunie et al., 2018) that has 
been proposed but has not been adopted or popularized (Singh et al., 2011) despite the 
effort to demonstrate the use of DICOM in digital pathology (Herrmann et al., 2018). In 
2013, (Goode et al., 2013) have introduced an open-source library to read the WSIs called 
OpenSlide which later become the only available vendor-neutral tool to read the WSIs to 
date. Many other WSI visualization and analysis software have adopted the library to create 
web-based application (Gutman et al., 2013, 2017), stand-alone software such as QuPath 
(Bankhead et al., 2017) and ASAP (Litjens, 2015), and extension, SlideJ (Della Mea et al., 
2017), to ImageJ (Schindelin et al., 2015). Around the same time, OpenSeadragon (OSD) 
library (‘OpenSeadragon Project’, 2013) was introduced as a web-based JavaScript-based 
viewer for high-resolution zoomable image. It is capable of viewing the multi-scale images 
including WSIs. OSD is then used in web-based implementation of WSI viewer.  

The web-based implementation of OpenSlide with OSD to help visualize the WSIs 
from TCGA project on the webpage could be seen in the US National Cancer Institute’s 
Genomic Data Commons. It helps the users to visualize the WSIs without downloading the 
entire large WSI file, however, it lacks the functionality to modify, annotate, or analyze the 
WSIs. In 2017, QuPath (Bankhead et al., 2017) was introduced as a cross-platform stand-
alone software. It is a tool to view WSIs on local machine and it is capable of accomplishing 
many tasks including basic annotation of the WSIs and locally segmenting the image with 
superpixel algorithms. The most detailed annotation method that QuPath can achieve is 
selecting multiple points in the image to form a polygon, this approach is good for manually 
mark a small number of regions for human references, it is not detailed enough for 
computers. Furthermore, the annotation data made in QuPath has to be managed manually 
and it does not provide centralized system to manage the WSIs or annotation data. Some 
works use point-based selection (Dong et al., 2014; Xing, Xie and Yang, 2016) to mark at 
the center of nuclei, but this method does not work in the situation where area containing 
several nuclei must be selected. It is clear that conventional hardware such as mouse and 
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keyboard was not designed for effectively delineating precise boundaries in natural images, 
thus we also propose a method to automatically select precise region boundaries.  

No open-source collaborative annotation software specifically made for 
histopathological image is publicly available at the moment. Besides, such software should 
allow online-collaboration to achieve high annotation throughput and maximize the 
accessibility for the users since they do not have to download the entire dataset and install 
additional software. It should also be able to manage highly detailed annotation with 
region-specific semantic enrichment. The challenges will be addressed with our proposed 
framework.  

 
 

3 Material and method 

Constructing pathologically meaningful annotations for WSI requires standardized 
procedures which should align with existing pathological routines (Zarella et al., 2018). 
The way annotators use OpenHI was designed based on pathology grading standards. 
Currently, the platform can capture grades for well-known cancer type that use single 
grading scheme e.g. WHO/ISUP grading for renal cancer, Gleason grading (Gleason, 1992) 
for prostate cancer, Nottingham grading for breast cancer, and so on. The proposed 
platform was designed to be implemented on a web server therefore it could be accessed 
simultaneously via a web-browser by multiple users without geographical restrictions. To 
minimize effort of acquiring most detailed annotations with precise sub-region boundaries 
and semantic enrichment, our framework pre-segment the image into semantically 
meaningful sub-regions as demonstrated in Figure 1 by a widely used graph-based image 
segmentation method called SLIC superpixel (Achanta et al., 2012). In this case, the 
annotators can quickly select the sub-regions by simply clicking or dragging mouse 
through them via the graphic user interface. Additionally, our framework has the ability to 
freely access any regions of WSI at will using different zooming level based on OpenSlide 
being utilized as the others did (Gutman et al., 2013; Litjens, 2015; Bankhead et al., 2017). 
OpenHI is developed on other well-established libraries and tools, thus the project should 
be easy to maintain and extend by other developers.  

3.1 Annotation design 
Tissue grading decision can be made at different levels: patient/case, slide, cluster of cells, 
or nuclei. While patient-level grade is the ultimate goal of histopathological examination, 
the underlying decision-making process relies on a more granular findings about different 
areas of different slides. Appropriate grade must be assigned to segments with precise 
spatial boundaries. The platform enables users to freely adjust to a particular grade and 
select applicable image segments. By achieving granular annotation, prediction systems 
developed using the data will be able to analyze digital slides in similar ways as human 
pathologists do.  

Adjusting tumor grade setting in the platform can be done via the control panel where 
annotators can select one of the pre-defined grades according to chosen grading system. 
For example, annotators may choose either grade 1, 2, 3, 4, or healthy in a 4-tier grading 
system such as WHO/ISUP or Gleason guideline. After the grade has been decided, 
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annotators would select or mark relevant segments. The entire process can be summarized 
in to a simple annotation procedure: “observe-grade-mark”, the procedure can be repeated 
until the annotation is finished. 

3.2 Proposed framework 
The platform consists of three main components along with a MySQL database server to 
store the annotation coordinates. The main components include image pre-processing of 
the WSIs, the server-end module, and the GUI. Data stored stored in the platform are WSI 
files, sub-region boundary matrices, annotation coordinates in MySQL database, and 
metadata of each slide image. Figure 2 illustrates each component and the data flow 
between them. 

3.2.1 Image pre-processing 

A WSI is a very large 2-dimensional array of data. It is too large to be handled by most 
(and in some cases all) of conventional image formats. Furthermore, the conventional 
formats are currently not a vendor natural standard for such kind of data (Cooper et al., 
2015). Conventional image segmentation technique has also faced a challenge in 
processing this kind of image as well. It is known that processing WSIs is memory 
demanding (Della Mea et al., 2017). The SLIC Superpixel (Achanta et al., 2012) 
segmentation on the WSIs also requires large amount of memory. Thus, it is reasonable to 
have memory-consuming processes deployed on a server with relatively larger amount of 
memory than typical computers. To our knowledge, there are currently no practical 
implementation on superpixel with sufficient segmentation precision on whole WSIs on a 
scale of personal computer, however, there are efforts to alter superpixel algorithm for 
implementation with large images. Developing a robust and fast image segmentation 
method is still a challenge in digital pathology informatics (Kothari et al., 2013). By 
incorporating superpixel segmentation with the WSIs, we have established a new ROI 
selection method in digital pathology. 

One lasting issue with superpixel algorithm in image segmentation is selecting a 
number of final segmented sub-region (Nsuperpixel). This number is crucial since it could lead 
to under- or over-segmentation. Tuning for good number of segments to avoid under- and 
over-segmentation in superpixel algorithm has been a challenge in utilizing the method. It 
is even more problematic to choose one number of segments for all WSIs since each of 
them has different dimensions. To tackle this problem, we shift the idea of number of sub-
regions to average sub-region size (Psub). We calculate the Nsuperpixel by specifying desired 
Psub, thus the size of the sub-region will be consistent throughout the annotation project as 
shown in (1) where Ptotal is resolution of each WSI. From our trial in WSIs with 0.25 
micron/pixel resolution at 20x objective lenses, this number could range from around 6,000 
to 50 pixels/sub-region to effectively cluster cells. The example of a portion of the image 
pre-segment with superpixel algorithm is shown in Figure 3.  
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To avoid over-segmentation where an annotator has to choose unnecessarily large 
number of sub-regions to establish one cancerous region or under-segmentation where a 
cancerous region is not cleanly divided from normal regions (see Figure 4), our framework 
provides users an option to calibrate at multiple pre-segmentation levels and select the most 
suitable level for the annotation in specific area of the image. During the annotation 
session, the annotator could switch back and forth between different pre-segmentation level 
for a level that a cancerous region could be accurately separated at the same time with the 
consideration of the annotator’s convenience and efficiency.  

At the end of pre-processing, matrices containing sub-region boundary data are stored 
as a binary image using portable network graphic (PNG) format. This image with boundary 
data is large in dimensions, but not in file size, therefore it is practical to store them as one 
continuous image where it could be easily loaded into the memory when needed.  

3.2.2 Server-end module 

The second component of the framework is to interactively respond to the user request in 
real-time. To lower the computational expenses, only the area of a WSI being viewed is 
processed. The server-end module includes sub-region boundary generation, existing 
annotated sub-regions visualization, annotation coordinates recording and deletion, and 
virtual magnification factor calculation. 

Composing the final viewing image which is sent to the graphic user interface requires 
three components: (1) original WSI, (2) sub-region boundary, and (3) existing annotation. 
Part of WSI can be easily obtained via OpenSlide by stating coordinates of requested 
viewing area. Similarly, sub-region boundary can be easily obtained by image cropping 
operation. Visualizing existing annotations requires data entries from the database server 
and sub-region boundary image. Corresponding data entries of annotated sub-regions will 
be fetched from the database server via SQL queries. The representation point of each sub-
region will be treated as a seed point for a flood-fill operation, thus entire sub-region could 
be visualized, and corresponding color for each grade will be filled. Finally, the sub-region 
boundary layer is embedded into the WSI, then the visualized annotations layer is alpha-
blended, preserving a certain degree of transparency so that annotators can still see through 
the annotation. This process is illustrated in Figure 5.  

The server-end module also supplies the GUI with some indicator value to approximate 
the zooming power of certain digital slide zooming state, we call this virtual magnification. 
Some grading system such as WHO/ISUP kidney clear cell carcinoma annotation standard  
(Delahunt et al., 2013) (see Table 1) require the annotators to take magnification power as 
a part of the final decision. This functionality is crucial for grading systems that rely on 
microscope magnification. It is also a worthy indicator for the pathologist who is new to 
digital pathology as well.  

To accurately calculate virtual magnification, we need to understand that real 
magnification in the microscope is the combination of magnification from objective and 
eye piece lenses as in (2). In virtual slides, the objective magnification (Mobj) is restrained 
by magnification factor of the objective lenses used during the scan which is specified in 
the metadata of the WSI file, stated as a parameter named pixel size and often has a unit of 
micron/pixel. Tracing back from micron/pixel to objective lenses magnification power can 
be made by referring to the specification of whole-slide scanner. In our testing dataset, the 
WSIs with pixel size of 0.25 and 0.50 micron/pixel was scanned by 40x and 10x objective 
lenses respectively. The eye piece magnification (Meye) is more complicated to calculate, 
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three parameters are needed for the calculation including scanner sensor pixel size, 
monitor’s pixel size, and distance between the monitor and the user. T. Sellaro et al’s 
method can be used to calculate virtual objective magnification and virtual eye piece 
magnification; there are calculation sample in their work (Sellaro et al., 2013). Finally, the 
total virtual magnification (Mtotal) could be summarized by (2). 

 
 0,-,.) = 0-/1 × 0%3% (2) 

 
To avoid complications in our framework, we simplify the virtual magnification 

calculation and focus on three parameters which are WSI pixel size (SWSI), monitor pixel 
size (Smonitor), and digital zooming factor (Mdigital). The parameter image pixel size reflects 
the real-world size of the scanning object which we use as an anchor or original size and 
the magnification is the zooming factor based on this size. The monitor size can be 
calculated by considering the screen resolution and the monitor physical size. For example, 
the 24-inch computer display with 1920-by-1080 pixel resolution would have a monitor 
pixel size of approximately 270 micron. OpenHI can automatically detect these setting with 
the standard JavaScript protocol. To calculate the magnification factor by incorporating the 
image pixel and screen size can be done by (3). The digital zoom can be calculated by the 
size of the viewer shown in the GUI (Sviewer) and the size of the image being viewed in the 
viewer (Sviewing) as shown in (4). Finally, the virtual magnification in OpenHI can be 
calculated by (5). 
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 0,-,.) = 045678-9',-& × 0;'<',.) (5) 

3.3.3 Graphic user interface 

The web-based GUI of our proposed framework is comprised of the main WSI viewer, 
virtual magnification indicator, control panel for annotation configuration, and slide 
information panel as shown in Figure 5. 

As the use of OSD with OpenSlide has been demonstrated in (Goode et al., 2013) in 
2013, we extend the usage for WSI annotation. Our framework has attained the capabilities 
of OSD and OpenSlide to view a WSI with smooth zooming and panning experience 
similar to other image viewers while adding the customized annotation capability to the 
framework. This allows the annotators to easily annotate any part of WSI they want. When 
annotating a number of sub-regions with the same grade, an annotator may select each 
individual sub-region by a mouse click. Rather than clicking the sub-regions one by one, 
the framework provides an option of clicking then pressing mouse over several sub-regions 
to do bulk annotation since the adjacent sub-regions tend to contain the same swamp of 
cancerous cells.  
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 Control panel allows users to change some configurations to make the annotation 
easier including the pre-segmentation level, tumor gradings, undo button, and option to 
show or hide sub-region boundaries along with existing annotations. An alternative way to 
adjust these parameters is the usage of keyboard hotkeys that could speed up the annotation 
once users get familiar with the system. Virtual magnification indicator—zooming factor 
and resolving power—helps annotators to get a sense of how much zooming power they 
are using.  

Slide information panel allows annotators to look at basic information about the tissue 
slide. The information may come from electronic medical record or slide preparation 
process. The framework supports data written in XML format recorded in the US Genomic 
Data Commons (GDC) standard. The parsed data is simplified into key-value pairs. 
Examples of keys are gender, age, race, etc.  

3.3.4 Database server 

Due to simultaneous access—read and write—to annotation data on any part of any WSIs 
from multiple users, MySQL database server is chosen to cope with this job. Each user 
interaction to annotate the WSI is recorded as an entry. The number of entries could grow 
up to several thousand for a single WSI. To maximize the granularity of the annotation 
while keeping the utility of collected data, properties in each entry includs exact chosen 
coordinate x and y, assigned tumor grading, pre-segmentation level, time of annotation, 
slide ID, and annotator ID.  

The annotation coordinates are stored based on the highest resolution of a WSI to 
preserve the precision. Each of the coordinates is paired to the tumor grading which the 
annotator has assigned during the annotation of that point. The point is also bound to the 
pre-segmentation level which represents the boundary of each sub-regions. Retrieving 
existing annotation according to the area being viewed is easily done by simple SQL 
queries.  

To maximize the extendibility of this annotation software, it is designed to be highly 
customizable. Some parameters are designed for the annotators (pathologists) and can be 
switched during annotation processes. The other parameters are made for the data scientist 
so that they can achieve the sufficient annotation quality for further uses.  

3.3 Dependencies 
The image pre-processing module was implemented by MATLAB version 9.4.0 (R2018a) 
with image processing toolbox version 10.2 to perform SLIC superpixel algorithm 
(Achanta et al., 2012). Noted that superpixel segmentation could also be implemented by 
other open source image processing library such as OpenCV or scikit-image (van der Walt 
et al., 2014).  

The server-end module is written in Python 3. We have adopted Flask 1.0.2 as our web 
framework to manage information flowing between the database and the annotators. 
Within the web framework, OpenSlide is used to read WSI files and OpenCV with Numpy 
are used to generate images to be sent to the client. To connect to MySQL server, the 
module ‘mysql-connector’ are used.  

In the web-based GUI, OSD is used as an image viewer and annotating coordinates and 
user interaction to navigate around the WSI are acquired through OSD. JQuery are used 
for handling HTTP requests.  
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4 Result 

The scalability and extendibility of the proposed framework would make large-scale 
collaborative annotation of WSIs possible. It does allow online cooperation between a 
group of researchers from different geographical locations to perform annotation on an 
online platform where data scientists can reconfigure the framework for the need of each 
specific project using different parameters as shown in Table 2, thus the annotator’s effort 
to reconfigure the software is minimized. It allows users to view WSI scans from multiple 
vendors and let them navigate around smoothly. Annotation with high information 
granularity can be accomplished. The proposed framework can ultimately be a foundation 
of crowed-sourcing WSI annotation platform. Enabling online real-time collaboration 
converges effort from pathologists to annotate and cross-validate large-scale images. 

4.1 Functionality 

The proposed framework offers the freedom of choosing from pre-defined segmentation 
levels and switching during annotation. Meanwhile, the pre-defined segmentation levels 
are kept consistent on different images. For example, a sub-region in one image would 
contain approximately the same number of cells as another sub-region does in a different 
image, as long as the two sub-regions comply with the same pre-defined segmentation 
level. The consistency in the sub-region average size is achieved because the number of 
segments in superpixel segmentation was calculated by the desired sub-region size and the 
image size. The ability to support multiple pre-defined segmentation level which let the 
user to interactively switch between them during the annotation session can increase 
annotation efficiency. 

The proposed framework offers two methods of selecting annotation sub-regions which 
is a click to select individual sub-region or hold-and-drag over multiple sub-regions to 
select as illustrated in Figure 7 (b) and (c) respectively. The latter option is useful since a 
swamp of cancerous cells is likely to occupy several consecutive sub-regions. Selecting 
sub-regions in this manner could be relatively much faster than using relatively more 
mouse clicks to form an equivalently precise polygon as shown in Figure 7 (a). The 
comparison can be seen in Figure 7. Besides the easy sub-region selection, the user can 
also select gradings easily via the control panel next to the viewer as shown in Figure 6 or 
by hotkeys. Additionally, in the case that the annotator mistakenly selects the region, the 
framework can revert to previous step or the annotator can deselect some sub-regions. 

4.2 Virtual magnification 

The magnification is crucial to some grading standard such as WHO/ISUP grading system 
for renal cell carcinoma where it requires the uses of microscope magnification to make a 
grading decision. Viewing the tissue image in virtual environment could be challenging for 
pathologists since there are more factors contributing to the actual size of image that 
pathologists would see such as monitor size and density which varies between monitors, 
unfixed distance between the eyes and the monitor, and continuous zooming instead of 
discrete zooming heads in conventional microscope. Nevertheless, there are a few studies 
about the differences between diagnosis from conventional microscopy and virtual slides 
(Jukić et al., 2011; Mukhopadhyay et al., 2018). These studies have ensured us that WSI 
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is noninferior to microscopy for primary diagnosis. Digital pathology has been virtualizing 
all aspects of conventional microscope including zooming, panning, and magnifying. The 
only aspect of microscope that has not been perfected is magnifying because all previous 
viewers lack a precise virtual magnification to choose in virtual slide viewing due to the 
fact that there are many factors affecting virtual magnification. Furthermore, grading for 
this type of cancer also has major discordance between WSI and conventional microscopy 
in (Mukhopadhyay et al., 2018) therefore we think that it is important to improve this 
aspect of virtual slide for renal clear cell carcinoma gradings. Besides, we have added 
accurate virtual magnification in our viewer to overcome this problem.   

4.3 Extendibility 

In term of digital slide formats, since we utilize OpenSlide, the proposed framework can 
support various WSI formats from different scanner vendor including Aperio (.svs, .tif), 
Hamamatsu (.vms, .vmu, .ndpi), Leica (.scn), MIRAX (.mrxs), Philips (.tiff), Sakura 
(.svslide), Trestle (.tif), Ventana (.bif, .tif), and Generic tiled TIFF (.tif) (Goode et al., 
2013). 

The proposed software is free and open-source, it is available at GitLab 
(https://gitlab.com/BioAI/OpenHI) under GNU General Public License v3.0, therefore it 
can be modified to suit the need in different purposes. The framework is also compatible 
with general LAMP stack which is widely available on the could computing platforms or 
local server environment. 

4.4 Data acquisition 

In software development and testing, we use WSIs directly downloaded from TCGA data 
repository (Tomczak, Czerwińska and Wiznerowicz, 2015). Thus the testing environment, 
WSI format used in our proposed framework is Aperio (.svs) file. The images are tissue 
slides scanned with 20x magnification with resolving power of 0.5 micron/pixel (Cooper 
et al., 2015). In our sample set of data, the average resolution of WSIs is 920 megapixel 
with the maximum at 11,282 megapixel. The file contains three levels of multi-scale 
representation, and the average file size is 202 MB with the maximum of ~2GB. 

4.5 Performance 

Annotation outcome and processing speed are the two main factors that contribute to the 
performance of the framework: annotation quality and annotation speed. The level of 
precision in annotation could be categorized into bounding boxes and circles, polygons, 
and pixel-level annotation as shown in Figure 8 (a-c) respectively. The mentioned 
annotation methods are ordered from greater simplicity with less precision to more 
complexity with more precision. Comparing OpenHI framework to other similar software, 
our proposed method can support pixel-level annotation precision while the other software 
(Gutman et al., 2013, 2017; Litjens, 2015; Bankhead et al., 2017) cannot. In comparison, 
OpenHI could significantly improve the annotation quality thus achieve better annotation 
outcome. Other than the annotation quality, the processing speed which contribute directly 
to the interactivity of the framework can reflect annotation efficiency. In our proposed 
method, the framework will consume more processing time when large area of the image 
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is needed to be viewed. To demonstrate the robustness of the proposed method, it was 
tested based on the real-world usage as described later in this section. 

The framework was tested on two environments: server and personal computer. In the 
server environment, an Intel(R) Xeon(R) CPU E5-2650 v4 (2.20GHz), 1266 MHz with a 
total of 48 cores and 256 gigabytes of RAM. The testing repository occupies 500 gigabytes 
of storage. The host operating system is Ubuntu 16.04 LTS. However, for a single user, the 
environment at the scale of personal computer is enough, the minimum requirement for the 
host that we have tested with is Intel Core i7 (1.7GHz) with 2 cores and 8 gigabytes of 
RAM excluding image pre-processing module due to memory limitation (see image pre-
processing section). 

A 250 MB WSI was used during the processing speed testing. The test was performed 
on a machine with single user requirement. The response time is varied by processing 
resolution which is specified by the zooming level that the user has queried. For instance, 
if the user request to view a small area of the WSI or use high magnification, the processing 
resolution will be low. To view the image and sub-regions clearly, the user will need to 
magnify the WSI so that only less than 15 megapixels of resolution are needed to be 
processed. The examples of the viewing image on 800-by-460 pixel viewer at different 
processing resolution is illustrated in Figure 9. In most cases, comfortable viewing 
magnification is at 3 to 8 megapixels processing resolution where it is suitable for 
annotation task. The response time is shown in Figure 10 where the average processing 
time will take around 300 ms with the maximum at 580 ms which is almost unnoticeable 
and responsive enough to perform annotation task efficiently.  

To conclude about the performance of the framework, in term of annotation outcome, 
the framework can achieve superior annotation precision compare to other similar software 
while maintaining decent processing speed. Thus, OpenHI can be used to perform 
efficiently in large-scale annotation of WSIs. 

5 Discussion 

While OpenHI do support multiple user during the annotation on the same tissue slide, 
interpretation of multi-expert annotation has not been included in the framework yet. 
Methods to effectively combine multi-expert annotation should be investigated. There are 
two aspects consolidate multiple annotations: spatial and grading degree. Similarly, 
methods to validate inter-rater reliability should be established as well. Using collaborative 
platform as an infrastructure, real-time validation should be possible. Moreover, 
discordance between pathologists do happen even in glass slides setting (Joseph P 
Houghton et al., 2014; Joseph P. Houghton et al., 2014; Carney et al., 2016). Some are 
caused by pathologists’ experiences and some do not have clinical consequences, being 
able to distinguish genuine pathological disagreements from the ones influenced by the 
annotation framework should be useful.  

Further acceleration of annotation can be made by building on OpenHI using different 
approaches: provide machine-learning based suggestion, improve segmentation with 
nuclei localization, provide basic analysis the slide region, etc. Machine-learning based 
suggestion system is a promising approach to improve annotation speed since annotators 
would only need to confirm majority of annotations and correct some. But this approach 
may induce biases and affect annotation quality. The current pre-segmentation method 
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could be improved by localizing areas with nuclei and only pre-segment those areas. It 
could save some efforts since annotators can only focus on areas with cells. Basic 
information about the viewing area could be provided such as nuclei density, nuclei size, 
or ratio of H&E color.   

Generally, pixels in WSI files produced from whole-slide scanner originate from a light 
source, passing through objective lenses and recorded with an image sensor array. There 
are many parameters during each step of the light pathway, and they could be between 
scanners from different manufacturer. OpenHI calculates virtual magnification factor 
based on image pixel size, 0.25 micron/pixel in our testing dataset. This parameter was not 
provided in the metadata of every WSI file format. A recent regulatory guideline for whole-
slide imaging system (Zarella et al., 2018) by US Food and Drug Administration does not 
specify that WSI files should provide this parameter. Instead, it focuses on a closed whole-
slide imaging system spanning from scanners to computer displays which is not good for 
data interoperability. Furthermore, simulating virtual magnification should bear in mind 
that image presented on computer displays and perceived by annotators may be different. 

Most of the processing time is spent on retrieving and compiling different layers of 
images to visualize the current state of a particular part of the WSI. Another problem with 
the current WSI file formats is that we can only read from them. Tackling these problems, 
we suggest that a new file format with support to store annotation data may be needed. This 
could be a completely new file format based on multi-scale image techniques or deep 
zooming technology.  

6 Conclusion 

Digitalized histopathological images are increasing in a fast pace with continuous health 
informatics development around the world. The images present phenotypes of tumors at 
cellular level and may support the association study with genotypes from genome 
sequencing data. OpenHI may accelerate precise creation of phenotype annotations with 
semantic meaning in the images. Additionally, the framework utilizes web technology, 
therefore is capable of scaling and collaborative annotation which is a foundation of 
crowed-sourcing to create large-dataset. As a result, large-scale datasets with precise and 
semantically rich annotations which is suitable for training computational model could be 
efficiently created. The framework is open source and could be easily extended and 
implemented into a clinical decision-making workflow (Kothari et al., 2013). It also can 
be easily configured at the server-end module for data scientists to adapt different diagnosis 
standards, e.g. various cancer sub-types or gradings.  

This work does not only propose a framework for annotating WSI which overcomes 
technological challenges to read and store extremely large histopathological image, but 
also discuss procedures to combine semantic meaning within existing cancer grading 
systems onto digital slides. The proposed process along with the framework complies with 
usual pathological routine thus pathologists can effectively, efficiently annotate using the 
framework to achieve high quality biomedical dataset.  

Large-scale datasets with precise annotations may be efficiently created by the 
framework. Artificial intelligent methods, for example, based on statistical machine 
learning, could benefit from the rich features in the data and move forward to practically 
assist the pathologist’s routine laboratory work. Such pipeline could also provide a solution 
to imminent issue such as misgrading which could lead to misdiagnosis and to provide a 
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good foundation for the future development of phenotype-genotype or multi-omics 
associations (Cooper et al., 2015). 
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Tables 

Table 1 WHO/ISUP grading standard for renal cell carcinoma 

Grade Description 

Grade 1 Having inconspicuous or absent nucleoli at x400 magnification 

Grade 2 
Nucleoli should be distinctly visible at x400, but inconspicuous or invisible at x100 
magnification 

Grade 3 Nucleoli should be distinctly visible at x100 magnification 

Grade 4 
Tumors should encompass tumors with rhabdoid or sarcomatoid differentiation or those 
containing tumor giant cells or showing extreme nuclear pleomorphism with clumping of 
chromatin 

 

Table 2 The configurable parameters of the framework for extending to different image types 
and situations 

Parameter Time of configuration Description 

Pre-segmentation level Annotation This parameter determine the size of the sub-region as pre-
processed in the pre-processing step. 

Number of grading 
level 

Annotation In different cancer type and grading standards. The number of 
possible grades is different. Annotators can choose appropriate 
grade for each sub-region acoording to available grades.  

Pre-segmentation sub-
region pixel density 

Experiment setup This parameter could be mutual agreement between the 
annotator and the analyst before the pre-segmentation begins. 
Tuning of this parameter will allow efficient annotation 
process.  

Grading tier Experiment setup Different oncological types have different grading system. The 
annotation software could support different grading level.  

Viewer size Experiment setup The viewer size could be fixed to a specific size or make it 
adaptive to the annotator’s monitor screen size.  

 

Figures 
Figure 1 Comparison of how the intended region for selection (a) can be selected by a tiled-
based (b) and superpixel-based (c) segmentation. Sub-region selection in (c) is more efficient since 
it needs less selection and achieve more accurate annotation boundary. 

 

Figure 2 Structure of the framework with WSI data flow from original image to pre-
segmentation and annotation. 

(a) (b) (c)



   

 

   

   
 

   

   

 

   

    OpenHI: Open platform for histopathological image annotation    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

 

Figure 3 A part of a WSI (a) is pre-segmented using SLIC superpixel algorithm at 6100 (b), 610 
(c), and 60 (d) pixel/sub-region. 

 

 

Figure 4 Illustration of superpixel segmentation resulting in (a) over-segmentation, (b) under-
segmentation, and (c) appropriate sub-region size.  
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(a) over-segmentation (b) under-segmentation (c) appropriate sub-region 
size 

 

Figure 5 Process for creating viewing image by compiling original WSI, sub-region boundary, 
and existing annotation.  

 
 
 

Figure 6 The GUI of the framework with a sample image showing WSI viewer (left), virtual 
magnification indicator (bottom-left), control panel (top-right) containing tumour grading selector, 
pre-segmentation level selector, and slide information panel where accompanying information of a 
slide is shown. 
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Figure 7 Comparison of different sub-region selection method where (a) is done by using 
polygons, (b) is region-by-region selection, and (c) demonstrate continuous selection across 
multiple sub-regions suing hold-and-drag method. 

 

Figure 8 Different level of annotation precision from different image annotation methods from 
the least precise to the most precise boundary including (a) bounding box, (b) polygon, and (c) 
pixel-level annotation. 

 

Figure 9 Example of viewing image in different processing solution ranging from 3.3 (a), 5.1 (b), 
9.4 (c), and 15 (d) megapixel. 
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Figure 10 Processing time in different processing resolution ranging from 3.3 to 15 megapixel, 
corresponding to images (a) to (d) in Figure 9 
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