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Abstract—Histopathological images carry informative 
cellular visual phenotypes and have been digitalized in huge 
amount in medical institutes. However, the lack of software for 
annotating the specialized images has been a hurdle of fully 
exploiting the images for educating and researching, and 
enabling intelligent systems for automatic diagnosis or 
phenotype-genotype association study. This paper proposes an 
open-source web framework, OpenHI, for the whole-slide image 
annotation. The proposed framework could be utilized for 
simultaneous collaborative or crowd-sourcing annotation with 
standardized semantic enrichment at a pixel-level precision. 
Meanwhile, our accurate virtual magnification indicator 
provides annotators a crucial reference for deciding the grading 
of each region. In testing, the framework can responsively 
annotate the acquired whole-slide images from TCGA project 
and provide efficient annotation which is precise and 
semantically meaningful. OpenHI is an open-source framework 
thus it can be extended to support the annotation of whole-slide 
images from different source with different oncological types. 
The framework may facilitate the creation of large-scale 
precisely annotated histopathological image datasets. 

I. INTRODUCTION 
Large-scale histopathological images present rich 

information about the microenvironment of cancer which are 
crucial for interpreting the corresponding genotypes in omics 
data. Since pathology is one of the last medical specialties to 
be digitized [1], there has been limited software and tools that 
helps pathologists manage and analyze extra-large digital 
scans of glass slides – namely, whole-slide image (WSI). 
Furthermore, even fewer open-source software may be used 
for annotating and analyzing the WSIs. No existing software 
supports online multi-user annotation with detailed spatial 
resolution and semantic meaning. Here, we present OpenHI—
Open Histopathological Image, a publicly available open-
source annotation framework for WSI, which is capable of 
achieving pixel-level precise boundary and semantic 
annotation, and supports online collaborative annotation. 
Eventually, the proposed framework will facilitate the large-
scale histopathological image annotation and benefit machine-
learning based phenotype extraction.  

To make a cancer diagnosis in various oncological types, 
pathologists would need to analyze one or multiple tissue 
samples from a patient’s biopsy and decide the grading of each 
specific samples. This tedious procedure is manually carried 
out with a bright field light microscope [2]. In recent years, 
there has been multiple implementations of machine learning 
methods to enhance histopathology image analysis workflow 
by either assisting pathologists in image analysis or by 

establishing automated pipeline to analyze, by detecting and 
classifying the cancerous area, the WSI with high throughput 
and high precision to help reduce the workload of the 
pathologists [3]–[6]. However, these works were derived and 
tested on datasets with finite size and variability due to limited 
availability of public datasets. With our proposed framework, 
rapid creation of such datasets could be accomplished, thus 
sophisticate computational approach that holistically analyze 
the WSIs [7] may lead to a better grading decision.  

Collaboration between pathologists, as a source of expert 
knowledge, and data scientists, who will manage the acquired 
data, is necessary to complete large-scale histopathological 
image data annotation and cross-validate the quality, thus the 
annotation framework would need to minimize configuration 
at the annotator end (pathologist) and maximize 
configurability at the data scientists end. The ideal software 
for this application would minimize the annotators’ effort to 
annotate the image while capturing high information 
granularity including high spatial resolution and standardized 
semantic meaning. In the meantime, it should support online 
collaboration as well. 

II. RELATED WORK 
In cancer research, large-scale raw histopathology image 

repositories have been made publicly available by TCGA [8] 
and GTEx [9] project. The repositories contain tremendous 
amount of WSIs in different cancer types and the amount of 
data is continuously growing. The main barrier of fully 
utilizing data for automated methods is the lack of 
annotations. In recent years, there are enriched WSI datasets 
used in competitions [10], [11], however, they are limited by 
public availability, size, variability in cancer type, or spatially 
precise annotation. An annotation software capable of precise 
visual annotation and semantic information enrichment is 
highly demanded. 

WSI files are hard to read because WSIs cannot be saved 
in standard image format due to its unusually high resolution. 
In 2013, [1] have introduced an open-source library to read the 
WSIs called OpenSlide which later become the only available 
vendor-neutral tool to read the WSIs to date. Many other WSI 
visualization and analysis software have adopted the library to 
create web-based application [12], [13], stand-alone software 
such as QuPath [14] and ASAP [15], and extension, SlideJ 
[16], to ImageJ [17]. Around the same time, OpenSeadragon 
(OSD) library [18] was introduced as a web-based viewer for 
high-resolution zoomable image. It is capable of viewing the 
multi-scale images including WSIs. OSD is then used in web-
based implementation of WSI viewer.  



The web-based implementation of OpenSlide with OSD to 
help visualize the WSIs from TCGA project on the webpage 
could be seen in the US National Cancer Institute’s Genomic 
Data Commons. It helps the users to visualize the WSIs 
without downloading the entire large WSI file, however, it 
lacks the functionality to modify and analyze the WSIs. In 
2017, QuPath [14] was introduced as a cross-platform stand-
alone software. It is a tool to view WSIs on local machine and 
it is capable of accomplishing many tasks including basic 
annotation of the WSIs and locally segmenting the image with 
superpixel algorithms. The most detailed annotation method 
that QuPath can achieve is selecting multiple points in the 
image to form a polygon, this approach is good for manually 
mark a small number of regions for human references, it is not 
detailed enough for computers.  

No open-source collaborative annotation software 
specifically made for histopathological image is publicly 
available at the moment. Besides, such software should allow 
online-collaboration to achieve high annotation throughput 
and maximize the accessibility for the users since they do not 
have to download the entire dataset and install additional 
software. It should also be able to manage highly detailed 
annotation with region-specific semantic enrichment. The 
challenges will be addressed with our proposed framework.  

III. MATERIAL AND METHODS 
The proposed framework was designed to be implemented on 
a web server therefore it could simultaneously be accessed via 
a web-browser by multiple users. To minimize effort of 
acquiring most detailed annotations with precise sub-region 
boundaries and semantic enrichment, our framework pre-
segment the image into semantically meaningful sub-regions 
as demonstrated in Fig. 1 by a widely used image 
segmentation method called SLIC superpixel [19]. In this 
case, the annotators can quickly select the sub-regions by 
simply clicking or dragging mouse through them via the 

graphic user interface. Additionally, our framework has the 
ability to freely access any regions of WSI at will at different 
zooming level based on OpenSlide being utilized as the others 
did [12], [14], [15]. 

A. The framework 
The framework consists of three main components along 

with a MySQL server to store the annotation coordinates. The 
main components include image pre-processing of the WSIs, 
the web framework, and the GUI. Three types of data are 
stored in alongside the framework which is the WSI files, the 
sub-region boundary matrices, and the annotation coordinates. 
Fig. 2 illustrates each components and the data flow between 
them. 

1) Image pre-processing 
A WSI is a very large 2-dimensional array of data. It is too 

large to be handled by most (and in some cases all) of 
conventional image formats. Furthermore, the conventional 
formats are currently not a vendor natural standard for such 
kind of data [20]. Conventional image segmentation technique 
has also faced a challenge in processing this kind of image as 
well. It is known that processing WSIs is memory demanding 
[16]. The SLIC Superpixel [19] segmentation on the WSIs 
also requires large amount of memory. Thus, it is reasonable 
to have memory-consuming processes deployed on a server 
with relatively larger amount of memory. To our knowledge, 
there is currently no practical implementation on superpixel 
with sufficient segmentation precision on whole WSIs on a 
scale of personal computer, however, there are efforts to alter 
superpixel algorithm for implementation with large images. 
Developing a robust and fast image segmentation method is 
still a challenge in digital pathology informatics [21]. By 
incorporating superpixel segmentation with the WSIs, we 
have established a new ROI selection method in digital 
pathology. 

 
Fig. 1. Comparison of how the intended region for selection (a) can be selected by a tiled-based (b) and superpixel-based (c) segmentation. Sub-region 
selection in (c) is more efficient since it needs less selection and achieve more accurate annotation boundary.  

 
Fig. 2. Structure of the framework with WSI data flow from original image to pre-segmentation and annotation. 

 



The long lasting issue with superpixel algorithm in image 
segmentation is of making a decision about the number of 
final segmented sub-region which could lead to under- or 
over-segmentation. Tuning for good number of segments to 
avoid under- and over-segmentation in superpixel algorithm 
has been a challenge in utilizing the method. It is even more 
problematic to choose one number for all images. To tackle 
this problem, we calculate the number of superpixeled sub-
regions (Nsuperpixel) by specifying desired average sub-region 
size (Psub), thus the size of the sub-region will be consistent 
throughout the annotation project as shown in (1) where Ptotal 
is the WSI resolution. In practice, this number could range 
from around 6000 to 50 pixels/sub-region providing that the 
WSI has been scanned with 20x magnification lenses and it 
should increase or decrease with the magnification. The 
example of a portion of the image pre-segment with superpixel 
algorithm is shown in Fig. 3.  

 𝑁"#$%&$'(%) =
𝑃,-,.)
𝑃"#/

 (1) 

   
To avoid over-segmentation where an annotator has to 

choose unnecessarily large number of sub-regions to establish 
one cancerous region or under-segmentation where a 
cancerous region is not cleanly divided from normal regions, 
our framework provides users an option to calibrate at 
multiple pre-segmentation levels. During the annotation 
session, the annotator could switch back and forth between 
different pre-segmentation level for a level that a cancerous 
region could be accurately separated at the same time with the 
consideration of the annotator’s convenience and efficiency.  

 

Fig. 3. A part of a WSI is pre-segmented using superpixel algorithm at 
6100, 610, and 60 pixel/sub-region. 

At the end of pre-processing, matrices containing sub-
region boundary information are stored using a binary image 
format. This image with boundary information is large in 
dimensions but not in file size, therefore it is practical to store 
them as one continuous image where it could be easily loaded 
into the memory when needed.  

2) Server-end module 
The second component of the framework is to interactively 

respond to the user request in real-time. To lower the 
computational expenses, only the area of a WSI being viewed 
is processed. The processing includes the generation of sub-
region boundary, visualization of the annotated sub-regions, 
and annotation coordinates recording and deletion.  

As the use of OSD with OpenSlide has been demonstrated 
in [1] in 2013, we extend the usage for WSI annotation. Our 
framework has attained the capability of OSD and OpenSlide 
to view a WSI with smooth zooming and panning experience 
while adding the customized annotation capability to the 
framework. This allows the annotators to easily annotate any 
part of WSI they want. When annotating a number of sub-
regions with the same grade, an annotator may select each 
individual sub-region by a mouse click. Rather than clicking 
the sub-regions one by one, the framework provides an option 
of clicking then pressing mouse over several sub-regions to do 
bulk annotation since the adjacent sub-regions tend to contain 
the same swamp of cancerous cells. Aside from conveniently 
choosing the sub-region, the GUI should provide some 
indicator to approximate the zooming power of current digital 
image state, this is also called virtual magnification. Since the 
gradings of some cancer type such as WHO/ISUP kidney clear 
cell carcinoma annotation standard [22] (see Table 2) require 
the annotators to take magnification power as a part of 
decision. This functionality is crucial for the grading system 
that rely on microscope magnification. It is also a worthy 
indicator for the pathologist who is new to digital pathology 
as well.  

To accurately calculate virtual magnification, we need to 
understand that real magnification in the microscope is the 
combination of magnification from objective and eye piece 
lenses. In virtual slides, the objective magnification (Mobj) is 
restrained by magnification factor of the objective lenses used 
during the scan which is specified in the metadata of the WSI 
file. The eye piece magnification (Meye) is more complicated 
to calculate, three parameters are needed for the calculation 
including scanner sensor pixel size, monitor’s pixel size, and 
distance between the monitor and the user. The scanner sensor 
pixel size is often not included in the metadata of the WSI file 
while magnification power is specified, thus it could be 
referenced back to the scanner manufacturer about scanner’s 
resolving power correspond to the specific magnification 
factor, and the sensor pixel size could be calculate by T. 
Sellaro et al method where there are calculation sample in 
their work [23]. To obtain the objective magnification (Mobj). 
Finally, the total virtual magnification (Mtotal) could be 
calculated by (2).  

 𝑀,-,.) = 𝑀-/1 × 𝑀%3% (2) 
 

3) Graphic user interface 
The web-based GUI of our proposed framework is 

comprised of the main WSI viewer, virtual magnification 
indicator, and menus for annotation configuration as shown in 
Fig. 4. The viewer, based-on OSD, enables an annotator to 
navigate around the WSI and the menu allows the user to 
change some configurations to make the annotation easier 
including the pre-segmentation level, tumor gradings, undo 
button, and option to show or hide sub-region boundaries and 
existing annotations. An alternative way to adjust these 
parameters is the usage of keyboard hotkeys that could speed 
up the annotation once the user gets familiar with the system. 



The GUI also has indicators which could assist the annotator 
to make a grading decision such as current virtual 
magnification factor, current resolving power, and the basic 
information about the tissue slide.  

 
Fig. 4. The GUI of the framework with a sample image showing virtual 
magnification indicator and options for pre-segmentation level and tumor 
grading switch. 

4) The framework’s data model 
To maximize the granularity of the annotation and keeping 

the utility of collected data. The framework will orient the data 
collection around the annotation coordinates by their 
properties including the exact chosen coordinate x and y, 
assigned tumor grading, pre-segmentation level, time of 
annotation, and the annotator’s ID.  

The annotation coordinates are stored based on the highest 
resolution of a WSI to preserve the precision. Each of the 
coordinates is paired to the tumor grading which the annotator 
has assigned during the annotation of that point. The point is 
also bound to the pre-segmentation level which represents the 
boundary of each sub-regions.  

To maximize the extendibility of this annotation software, 
it is designed to be highly customizable. Some parameters are 
designed for the annotators (pathologist) and can be switched 
during annotation processes. The other parameters are made 
for the data scientist so that they can achieve the sufficient 
annotation quality for further uses.  

B. Dependencies 
The image processing component of the framework was 

implemented by MATLAB with image processing toolbox to 
perform SLIC superpixel algorithm [19]. Noted that it could 
also be done by other open-source image processing library 
such as OpenCV or scikit-image [24]. The web framework is 
written in Python. We have adopted Flask as our web 
framework to manage information flowing between the 
database and the annotators. Within the web framework, 
OpenSlide is used to read WSI files and OpenCV is used in 
visualization. In the web-based GUI, OSD is used as the 
viewer and annotating coordinates and user interaction to 
navigate around the WSI are acquired through OSD. Lastly, 
the annotation information is stored in a MySQL server.  

IV. RESULTS 
The scalability and extendibility of the proposed 

framework would make large-scale collaborative annotation 
of WSIs possible. It does allow online cooperation between a 
group of researchers from different geographical locations to 
perform annotation on an online platform where data scientists 
can reconfigure the framework for the need of each specific 
project using different parameters as shown in Table 1, thus 
the annotator’s effort to reconfigure the software is 
minimized. It allows users to view WSI scans from multiple 
vendors and let them navigate around smoothly. Annotation 
with high information granularity can be accomplished. The 
proposed framework can ultimately be a foundation of 
crowed-sourcing WSI annotation platform. The enabled 
online real-time collaboration converges effort from 
pathologists to annotate and cross-validate large-scale images.  

TABLE I.  THE CONFIGURABLE PARAMETERS OF THE FRAMEWORK 
FOR EXTENDING TO DIFFERENT IMAGE TYPES AND SITUATIONS 

Parameter Time of 
configuration 

Description 

Pre-
segmentation 
level 

Annotation This parameter determine the size of the 
sub-region in pro-processed  

Number of 
grading level 

Annotation In different cancer type and grading 
standards. The level of grading is different.  

Pre-
segmentation 
sub-region 
pixel density 

Experiment 
setup 

This parameter could be mutual agreement 
between the annotator and the analyst 
before the pre-segmentation begins. Tuning 
of this parameter will allow efficient 
annotation process.  

Grading tier Experiment 
setup 

Different cancer sub-type has different 
grading system. The annotation software 
could support different grading level.  

Viewer size Experiment 
setup 

The viewer size could be fixed to a specific 
size or make it adaptive to the annotator’s 
monitor screen size.  

A. Functionality  
The proposed framework offers the freedom of choosing 

from pre-defined segmentation levels and switching during 
annotation. Meanwhile, the pre-defined segmentation levels 
are kept consistent on different images. For example, a sub-
region in one image would contain approximately the same 
number of cells as another sub-region does in a different 
image, as long as the two sub-regions comply with the same 
pre-defined segmentation level. The consistency in the sub-
region average size is achieved because the number of 
segments in superpixel segmentation was calculated by the 
desired sub-region size and the image size. The ability to 
support multiple pre-defined segmentation level which let the 
user to interactively switch between them during the 
annotation session can increase annotation efficiency.  

The proposed framework offers two methods of selecting 
annotation sub-regions which is a click to select individual 
sub-region or hold-and-drag over multiple sub-regions to 
select as illustrated in Fig. 5 (b) and (c) respectively. The latter 
option is useful since a swamp of cancerous cells is likely to 
occupy several consecutive sub-regions. Selecting sub-
regions in this manner could be relatively much faster than 
using relatively more mouse clicks to form an equivalently 
precise polygon as shown in Fig. 5 (a). The comparison can 
be seen in Fig. 5. Besides the easy sub-region selection, the 
user can also select gradings easily via the GUI next to the 



viewer as shown in Fig. 4 or by hotkeys. Additionally, in the 
case that the annotator mistakenly select the region, the 
framework can revert to previous step or the annotator can 
deselect some sub-regions.  

 

Fig. 5. Comparison of different sub-region selection method where (a) is 
done by using polygons, (b) is region-by-region selection, and (c) 
demonstrate continuous selection across multiple sub-regions suing hold-
and-drag method. 

B. Virtual magnification 
The magnification is crucial to some grading standard such 

as WHO/ISUP grading system for renal cell carcinoma where 
it requires the uses of microscope magnification to make a 
grading decision. Viewing the tissue image in virtual 
environment could be challenging for pathologists since there 
are more factors contributing to the actual size of image that 
pathologists would see such as monitor size and density which 
varies between monitors, unfixed distance between the eyes 
and the monitor, and continuous zooming instead of discrete 
zooming heads in conventional microscope. Nevertheless, 
there are a few studies about the differences between diagnosis 
from conventional microscopy and virtual slides [25], [26]. 
These studies have ensured us that WSI is noninferior to 
microscopy for primary diagnosis. Digital pathology has been 
virtualizing all aspects of conventional microscope including 
zooming, panning, and magnifying. The only aspect of 
microscope that has not been perfected is magnifying because 
all previous viewer lack a precise virtual magnification to 
choose in virtual slide viewing due to many factors. 
Furthermore, grading for this type of cancer also has major 
discordance between WSI and conventional microscopy in 
[25] therefore we think that it is important to improve this 
aspect of virtual slide for renal clear cell carcinoma gradings. 
Besides, we have added accurate virtual magnification in our 
viewer to overcome this problem.   

TABLE II.  WHO/ISUP GRADING STANDARD 

Grade Description 

Grade 1 Having inconspicuous or absent nucleoli at x400 
magnification 

Grade 2 Nucleoli should be distinctly visible at 400, but 
inconspicuous or invisible at x100 magnification 

Grade 3 Nucleoli should be distinctly visible at x100 
magnification 

Grade 4 

Tumors should encompass tumors with rhabdoid or 
sarcomatoid differentiation or those containing tumor 
giant cells or showing extreme nuclear pleomorphism 
with clumping of chromatin 

C. Extendibility 
In term of digital slide formats, since we utilize OpenSlide, 

the proposed framework can support various WSI formats 
from different scanner vendor including Aperio (.svs, .tif), 

Hamamatsu (.vms, .vmu, .ndpi), Leica (.scn), MIRAX 
(.mrxs), Philips (.tiff), Sakura (.svslide), Trestle (.tif), Ventana 
(.bif, .tif), and Generic tiled TIFF (.tif) [1]. 

 
Fig. 6. Example of viewing image in different processing solution ranging 
from 3.3 (a), 5.1 (b), 9.4 (c), and 15 (d) megapixel. 

 Our software is free and open-source, It is available at 
https://gitlab.com/BioAI/OpenHI under GNU General Public 



License v3.0, therefore it can be modified to suit the need in 
different purposes. The framework is also compatible with 
general LAMP stack which is widely available on the could 
computing platforms or local server environment. 

D. Data acquisition 
In software development and testing, we use WSIs directly 

downloaded from TCGA data repository [8]. Thus the testing 
environment, WSI format used in our proposed framework is 
Aperio (.svs) file. The images are scanned with 20x 
magnification with resolving power of 0.5 micron/pixel [20]. 
In our sample set of data, the average resolution of WSIs is 
920 megapixel with the maximum at 11,282 megapixel. The 
file contains three levels of multi-scale representation, and the 
average file size is 202 MB with the maximum of ~2GB.  

E. Performance 
The framework was tested on an Intel(R) Xeon(R) CPU 

E5-2650 v4 (2.20GHz), 1266 MHz with a total of 48 cores and 
256 gigabytes of RAM. The current repository occupies 500 
gigabytes of storage. The host operating system is Ubuntu 
16.04 LTS. However, for single user, the minimum 
requirement for the host that we have tested with is Intel Core 
i7 (1.7GHz) with 2 cores and 8 gigabytes of RAM excluding 
image pre-processing due to memory limitation (see image 
pre-processing section). 

 
Fig. 7. Processing time in different processing resolution ranging from 3.3 
to 15 megapixel, corresponding to images (a) to (d) in Fig. 6 

The 250 MB WSI is used during the performance testing 
where we test the response time of the framework on a 
machine with minimum requirement. The response time is 
varied by processing resolution which is specified by the 
zooming level that the user has requested. For instance, if the 
user request to view a small area of the WSI or use high 
magnification, the processing resolution will be low. To view 
the image and sub-regions clearly, the user will need to 
magnify the WSI so that only less than 15 megapixel of 
resolution are needed to be processed. The examples of the 
viewing image on 800-by-460 pixel viewer at different 
processing resolution is illustrated in Fig. 6. In most cases, we 
find viewing the image at 3 to 8 megapixel processing 
resolution is suitable for annotation task. The response time is 
shown in Fig. 7 where the average processing time will take 
around 300 ms with the maximum at 580 ms which is almost 
unnoticeable and responsive enough to perform annotation 
task efficiently.  

V. CONCLUSION 
Digitalized histopathological images are increasing in a 

fast pace with continuous health informatics development 
around the world. The images presents phenotypes of tumors 
at cellular level and may support the association study with 
genotypes from sequence data. OpenHI may accelerate 
precise creation of phenotype annotations with semantic 
meaning in the images. Additionally, the framework utilizes 
web technology, therefore is capable of collaborative 
annotation which is a foundation of crowed-sourcing to create 
large-dataset. As a result, large-scale datasets with precise and 
semantically rich annotations which is suitable for training 
computational model could be efficiently created. The 
framework is open-source and could be easily extended and 
implemented into a clinical decision-making workflow [21]. 
It also can be easily configurable at the back-end for the data 
scientist to adapt different diagnosis standards, e.g. various 
cancer sub-types or gradings.  

Large-scale datasets with precise annotations may be 
efficiently created by the framework. Artificial intelligent 
methods, for example, based on statistical machine learning, 
could benefit from the rich features in the data and move 
forward to practically assist the pathologist’s routine 
laboratory work. Such pipeline could also provide a solution 
to imminent issue such as misgrading which could lead to 
misdiagnosis and to provide a good foundation for the future 
development of phenotype-genotype or multi-omic 
associations [20].  
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